Рубрики
Без рубрики

Руководство по кодировке символов

Изучите кодировку символов в Java и узнайте о распространенных подводных камнях.

Автор оригинала: Kumar Chandrakant.

1. Обзор

В этом уроке мы обсудим основы кодирования символов и то, как мы справляемся с этим в Java.

2. Важность кодирования символов

Нам часто приходится иметь дело с текстами, принадлежащими к нескольким языкам с различными письменными знаками, такими как латинский или арабский. Каждый символ в каждом языке должен быть каким-то образом сопоставлен с набором единиц и нулей. Действительно, удивительно, что компьютеры могут правильно обрабатывать все наши языки.

Чтобы сделать это правильно, нам нужно подумать о кодировке символов. Невыполнение этого требования часто может привести к потере данных и даже уязвимостям безопасности.

Чтобы лучше понять это, давайте определим метод декодирования текста на Java:

String decodeText(String input, String encoding) throws IOException {
    return 
      new BufferedReader(
        new InputStreamReader(
          new ByteArrayInputStream(input.getBytes()), 
          Charset.forName(encoding)))
        .readLine();
}

Обратите внимание, что вводимый здесь текст использует кодировку платформы по умолчанию.

Если мы запустим этот метод с input как “Шаблон фасада-это шаблоны проектирования программного обеспечения.” и кодировка как “US-ASCII” , он выведет:

The fa��ade pattern is a software design pattern.

Ну, не совсем то, что мы ожидали.

Что могло пойти не так? Мы постараемся понять и исправить это в оставшейся части этого урока.

3. Основы

Однако, прежде чем копать глубже, давайте быстро рассмотрим три термина: кодировка , кодировка и кодовая точка .

3.1. Кодирование

Компьютеры могут понимать только двоичные представления, такие как 1 и 0 . Обработка всего остального требует некоторого сопоставления текста реального мира с его двоичным представлением. Это отображение-то, что мы знаем как кодировка символов или просто как кодировка .

Например, первая буква в нашем сообщении, “T”, в US-ASCII кодирует в “01010100”.

3.2. Кодировки

Сопоставление символов с их двоичными представлениями может сильно различаться с точки зрения символов, которые они включают. Количество символов, включенных в сопоставление, может варьироваться от нескольких до всех символов, используемых на практике. Набор символов, включенных в определение отображения, формально называется кодировкой .

Например, ASCII имеет кодировку из 128 символов .

3.3. Кодовый пункт

Кодовая точка-это абстракция, которая отделяет символ от его фактической кодировки. A кодовая точка – это целочисленная ссылка на определенный символ.

Мы можем представить само целое число в простых десятичных или альтернативных основаниях, таких как шестнадцатеричное или восьмеричное. Мы используем альтернативные базы для удобства ссылки на большие числа.

Например, первая буква в нашем сообщении, T, в Юникоде имеет кодовую точку “U+0054” (или 84 в десятичной системе счисления).

4. Понимание Схем Кодирования

Кодировка символов может принимать различные формы в зависимости от количества символов, которые она кодирует.

Количество закодированных символов имеет прямое отношение к длине каждого представления, которое обычно измеряется как количество байтов. Наличие большего количества символов для кодирования по существу означает необходимость более длинных двоичных представлений.

Давайте рассмотрим некоторые из популярных схем кодирования на практике сегодня.

4.1. Однобайтовое кодирование

Одна из самых ранних схем кодирования, называемая ASCII (Американский стандартный код для обмена информацией), использует однобайтовую схему кодирования. По сути, это означает, что каждый символ в ASCII представлен семибитными двоичными числами. Это все еще оставляет один бит свободным в каждом байте!

Ascii 128-символьный набор охватывает английские алфавиты в нижнем и верхнем регистрах, цифры и некоторые специальные и контрольные символы.

Давайте определим простой метод в Java для отображения двоичного представления символа в определенной схеме кодирования:

String convertToBinary(String input, String encoding) 
      throws UnsupportedEncodingException {
    byte[] encoded_input = Charset.forName(encoding)
      .encode(input)
      .array();  
    return IntStream.range(0, encoded_input.length)
        .map(i -> encoded_input[i])
        .mapToObj(e -> Integer.toBinaryString(e ^ 255))
        .map(e -> String.format("%1$" + Byte.SIZE + "s", e).replace(" ", "0"))
        .collect(Collectors.joining(" "));
}

Теперь символ ” T ” имеет кодовую точку 84 в US-ASCII (ASCII в Java называется US-ASCII).

И если мы используем наш метод утилиты, мы можем увидеть его двоичное представление:

assertEquals(convertToBinary("T", "US-ASCII"), "01010100");

Это, как мы и ожидали, семиразрядное двоичное представление символа “T”.

Исходный ASCII оставил самый значимый бит каждого байта неиспользованным. В то же время ASCII оставил довольно много непредставленных символов,

Исходный ASCII оставил самый значимый бит каждого байта неиспользованным. || В то же время ASCII оставил довольно много непредставленных символов,

Было предложено и принято несколько вариантов схемы кодирования ASCII.

Многие расширения ASCII имели разные уровни успеха, но, очевидно, это

Одним из наиболее популярных расширений ASCII был ISO-8859-1 , также называемый “ISO Latin 1”.

4.2. Многобайтовое кодирование

Поскольку потребность в размещении все большего количества символов росла, однобайтовые схемы кодирования, такие как ASCII, не были устойчивыми.

Это привело к появлению многобайтовых схем кодирования, которые имеют гораздо большую емкость, хотя и за счет увеличения требований к пространству.

BIG 5 и SHIFT-JIS являются примерами многобайтовых схем кодирования символов, которые начали использовать как один, так и два байта для представления более широких наборов символов . Большинство из них были созданы для того, чтобы представлять китайские и аналогичные сценарии, которые имеют значительно большее количество символов.

Давайте теперь вызовем метод convertToBinary с вводом как “語”, китайский символ, и кодирование как “Big5”:

assertEquals(convertToBinary("語", "Big5"), "10111011 01111001");

Вывод выше показывает, что кодировка Big5 использует два байта для представления символа “語”.

полный список кодировок символов, наряду с их псевдонимами, ведется Международным органом по номерам.

5. Юникод

Нетрудно понять, что, хотя кодирование важно, декодирование в равной степени жизненно важно для понимания представлений. Это возможно на практике только в том случае, если широко используется согласованная или совместимая схема кодирования.

Различные схемы кодирования, разработанные изолированно и практикуемые в местных географических регионах, начали становиться сложными.

Эта проблема породила особый стандарт кодирования, называемый Unicode, который имеет емкость для всех возможных символов в мире . Это включает в себя символы, которые используются, и даже те, которые уже не существуют!

Ну, для этого должно потребоваться несколько байтов для хранения каждого символа? Честно говоря, да, но у Unicode есть гениальное решение.

Unicode как стандарт определяет кодовые точки для каждого возможного символа в мире. Кодовая точка для символа “T” в Юникоде равна 84 в десятичной системе счисления. Обычно мы называем это “U+0054” в Юникоде, который представляет собой не что иное, как U+, за которым следует шестнадцатеричное число.

Мы используем шестнадцатеричную систему в качестве основы для кодовых точек в Юникоде, поскольку существует 1 114 112 точек, что является довольно большим числом для удобной передачи в десятичном формате!

То, как эти кодовые точки кодируются в биты, зависит от конкретных схем кодирования в Юникоде. Мы рассмотрим некоторые из этих схем кодирования в подразделах ниже.

5.1. UTF-32

UTF-32-это схема кодирования для Unicode, которая использует четыре байта для представления каждой кодовой точки , определенной Unicode. Очевидно, что использование четырех байтов для каждого символа неэффективно.

Давайте посмотрим, как простой символ, такой как “T”, представлен в UTF-32. Мы будем использовать метод преобразования в двоичный код , введенный ранее:

assertEquals(convertToBinary("T", "UTF-32"), "00000000 00000000 00000000 01010100");

Вывод выше показывает использование четырех байтов для представления символа “T”, где первые три байта-это просто потраченное впустую пространство.

5.2. UTF-8

UTF-8-это другая схема кодирования для Unicode, которая использует переменную длину байтов для кодирования . Хотя он обычно использует один байт для кодирования символов, при необходимости он может использовать большее количество байтов, что экономит место.

Давайте снова вызовем метод convertToBinary с вводом как “T” и кодированием как ” UTF-8″:

assertEquals(convertToBinary("T", "UTF-8"), "01010100");

Вывод в точности аналогичен ASCII, использующему только один байт. На самом деле UTF-8 полностью обратно совместим с ASCII.

Давайте снова вызовем метод convertToBinary с вводом как “語” и кодированием как ” UTF-8″:

assertEquals(convertToBinary("語", "UTF-8"), "11101000 10101010 10011110");

Как мы видим здесь, UTF-8 использует три байта для представления символа “語”. Это известно как кодирование переменной ширины .

UTF-8, благодаря своей экономичности пространства, является наиболее распространенной кодировкой, используемой в Интернете.

6. Поддержка кодирования в Java

Java поддерживает широкий спектр кодировок и их преобразования друг в друга. Класс Charset определяет набор стандартных кодировок , которые должна поддерживать каждая реализация платформы Java.

Это включает в себя US-ASCII, ISO-8859-1, UTF-8 и UTF-16, чтобы назвать некоторые из них. Конкретная реализация Java может дополнительно поддерживать дополнительные кодировки .

Есть некоторые тонкости в том, как Java подбирает кодировку для работы. Давайте рассмотрим их более подробно.

6.1. Кодировка по умолчанию

Платформа Java сильно зависит от свойства, называемого кодировкой по умолчанию . Виртуальная машина Java (JVM) определяет кодировку по умолчанию во время запуска .

Это зависит от локали и кодировки базовой операционной системы, на которой работает JVM. Например, в macOS кодировка по умолчанию-UTF-8.

Давайте посмотрим, как мы можем определить кодировку по умолчанию:

Charset.defaultCharset().displayName();

Если мы запустим этот фрагмент кода на компьютере с Windows, то получим результат:

windows-1252

Теперь “windows-1252” – это кодировка по умолчанию платформы Windows на английском языке, которая в данном случае определила кодировку по умолчанию JVM, работающей в Windows.

6.2. Кто использует Кодировку по умолчанию?

Многие API Java используют кодировку по умолчанию, определенную JVM. Чтобы назвать несколько:

  • InputStreamReader и Средство чтения файлов
  • OutputStreamWriter и Файловая машина
  • Форматер и Сканер
  • URLEncoder и URLDecoder

Итак, это означает, что если бы мы запустили наш пример без указания кодировки:

new BufferedReader(new InputStreamReader(new ByteArrayInputStream(input.getBytes()))).readLine();

затем он будет использовать кодировку по умолчанию для ее декодирования.

И есть несколько API, которые делают этот же выбор по умолчанию.

Таким образом, кодировка по умолчанию приобретает важность, которую мы не можем безопасно игнорировать.

6.3. Проблемы С Набором Символов По Умолчанию

Как мы уже видели, кодировка по умолчанию в Java определяется динамически при запуске JVM. Это делает платформу менее надежной или подверженной ошибкам при использовании в разных операционных системах.

Например, если мы запустим

new BufferedReader(new InputStreamReader(new ByteArrayInputStream(input.getBytes()))).readLine();

в macOS он будет использовать UTF-8.

Если мы попробуем тот же фрагмент кода в Windows, он будет использовать Windows-1252 для декодирования того же текста.

Или представьте, что вы пишете файл в mac OS, а затем читаете тот же файл в Windows.

Нетрудно понять, что из-за различных схем кодирования это может привести к потере или повреждению данных.

6.4. Можем ли мы переопределить кодировку по умолчанию?

Определение кодировки по умолчанию в Java приводит к двум системным свойствам:

  • file.encoding : Значение этого системного свойства является именем набора символов по умолчанию
  • sun.jnu.encoding : Значением этого системного свойства является имя набора символов, используемого при кодировании/декодировании путей к файлам

Теперь интуитивно понятно переопределять эти системные свойства с помощью аргументов командной строки:

-Dfile.encoding="UTF-8"
-Dsun.jnu.encoding="UTF-8"

Однако важно отметить, что эти свойства доступны только для чтения в Java. Их использование, как указано выше, отсутствует в документации . Переопределение этих системных свойств может не иметь желаемого или предсказуемого поведения.

Следовательно, мы должны избегать переопределения кодировки по умолчанию в Java .

6.5. Почему Java Не Решает Эту Проблему?

Существует предложение по улучшению Java (JEP), которое предписывает использовать “UTF-8” в качестве кодировки по умолчанию в Java вместо того, чтобы основывать ее на кодировке локали и операционной системы.

Этот ДЖИП находится в состоянии проекта на данный момент и когда он (надеюсь!) пройдя через него, мы решим большинство вопросов, которые мы обсуждали ранее.

Обратите внимание, что более новые API, такие как в файле java.nio.file.Файлы не используют кодировку по умолчанию. Методы в этих API-интерфейсах читают или записывают символьные потоки с кодировкой UTF-8, а не с кодировкой по умолчанию.

6.6. Решение Этой Проблемы в Наших Программах

Обычно мы должны выбирать кодировку при работе с текстом, а не полагаться на настройки по умолчанию . Мы можем явно объявить кодировку, которую мы хотим использовать в классах, которые имеют дело с преобразованием символов в байты.

К счастью, наш пример уже определяет кодировку. Нам просто нужно выбрать правильный, и пусть Java сделает все остальное.

К настоящему времени мы должны понять, что акцентированные символы, такие как “ç”, отсутствуют в схеме кодирования ASCII, и поэтому нам нужна кодировка, которая включает их. Может быть, UTF-8?

Давайте попробуем это сделать, теперь мы запустим метод decode Text с тем же вводом, но с кодировкой “UTF-8”:

The façade pattern is a software-design pattern.

Бинго! Мы можем увидеть результат, который мы надеялись увидеть.

Здесь мы установили кодировку, которая, по нашему мнению, лучше всего соответствует нашим потребностям в конструкторе InputStreamReader . Обычно это самый безопасный метод работы с символами и преобразованиями байтов в Java.

Аналогично, OutputStreamWriter и многие другие API поддерживают настройку схемы кодирования через свой конструктор.

6.7. Исключение MalformedInputException

Когда мы декодируем последовательность байтов, существуют случаи , когда она не является законной для данной кодировки , или же это не является законным шестнадцатибитным Юникодом. Другими словами, данная последовательность байтов не имеет отображения в указанной кодировке .

Существует три предопределенные стратегии (или CodingErrorAction ), когда входная последовательность имеет искаженные входные данные:

  • ИГНОРИРОВАТЬ будет игнорировать искаженные символы и возобновит операцию кодирования
  • REPLACE заменит искаженные символы в выходном буфере и возобновит операцию кодирования
  • ОТЧЕТ вызовет исключение MalformedInputException

По умолчанию malformedInputAction для кодера CharsetDecoder является REPORT, и по умолчанию malformedInputAction декодера по умолчанию в InputStreamReader is REPLACE.

Давайте определим функцию декодирования , которая получает заданную кодировку , тип CodingErrorAction и строку, подлежащую декодированию:

String decodeText(String input, Charset charset, 
  CodingErrorAction codingErrorAction) throws IOException {
    CharsetDecoder charsetDecoder = charset.newDecoder();
    charsetDecoder.onMalformedInput(codingErrorAction);
    return new BufferedReader(
      new InputStreamReader(
        new ByteArrayInputStream(input.getBytes()), charsetDecoder)).readLine();
}

Итак, если мы решим, что “Шаблон фасада-это шаблон проектирования программного обеспечения.” с помощью US_ASCII выходные данные для каждой стратегии будут разными. Во-первых, мы используем CodingErrorAction.ИГНОРИРОВАТЬ , который пропускает недопустимые символы:

Assertions.assertEquals(
  "The faade pattern is a software design pattern.",
  CharacterEncodingExamples.decodeText(
    "The façade pattern is a software design pattern.",
    StandardCharsets.US_ASCII,
    CodingErrorAction.IGNORE));

Для второго теста мы используем CodingErrorAction.ЗАМЕНИТЕ , который помещает � вместо запрещенных символов:

Assertions.assertEquals(
  "The fa��ade pattern is a software design pattern.",
  CharacterEncodingExamples.decodeText(
    "The façade pattern is a software design pattern.",
    StandardCharsets.US_ASCII,
    CodingErrorAction.REPLACE));

Для третьего теста мы используем CodingErrorAction.ОТЧЕТ который приводит к выбрасыванию MalformedInputException:

Assertions.assertThrows(
  MalformedInputException.class,
    () -> CharacterEncodingExamples.decodeText(
      "The façade pattern is a software design pattern.",
      StandardCharsets.US_ASCII,
      CodingErrorAction.REPORT));

7. Другие Места, Где Кодирование Важно

Нам не просто нужно учитывать кодировку символов при программировании. Тексты могут окончательно испортиться во многих других местах.

наиболее распространенной причиной проблем в этих случаях является преобразование текста из одной схемы кодирования в другую , что может привести к потере данных.

Давайте быстро рассмотрим несколько мест, где мы можем столкнуться с проблемами при кодировании или декодировании текста.

7.1. Текстовые Редакторы

В большинстве случаев текстовый редактор-это место, откуда исходят тексты. Существует множество текстовых редакторов в популярном выборе, включая vi, Блокнот и MS Word. Большинство из этих текстовых редакторов позволяют нам выбрать схему кодирования. Следовательно, мы всегда должны быть уверены, что они подходят для текста, с которым мы работаем.

7.2. Файловая система

После того, как мы создадим тексты в редакторе, нам нужно сохранить их в какой-то файловой системе. Файловая система зависит от операционной системы, на которой она работает. Большинство операционных систем имеют встроенную поддержку нескольких схем кодирования. Однако все еще могут быть случаи, когда преобразование кодировки приводит к потере данных.

7.3. Сеть

Тексты, передаваемые по сети с использованием протокола, такого как протокол передачи файлов (FTP), также включают преобразование между кодировками символов. Для всего, что закодировано в Юникоде, безопаснее всего передавать в двоичном виде, чтобы свести к минимуму риск потери при преобразовании. Однако передача текста по сети является одной из менее частых причин повреждения данных.

7.4. Базы данных

Большинство популярных баз данных, таких как Oracle и MySQL, поддерживают выбор схемы кодирования символов при установке или создании баз данных. Мы должны выбрать это в соответствии с текстами, которые мы ожидаем сохранить в базе данных. Это одно из наиболее частых мест, где повреждение текстовых данных происходит из-за преобразования кодировки.

7.5. Браузеры

Наконец, в большинстве веб-приложений мы создаем тексты и пропускаем их через различные слои с намерением просмотреть их в пользовательском интерфейсе, например в браузере. Здесь также важно, чтобы мы выбрали правильную кодировку символов, которая может правильно отображать символы. Большинство популярных браузеров, таких как Chrome, Edge, позволяют выбирать кодировку символов в своих настройках.

8. Заключение

В этой статье мы обсудили, как кодирование может быть проблемой при программировании.

Далее мы обсудили основные принципы, включая кодировку и кодировки. Более того, мы прошли через различные схемы кодирования и их использование.

Мы также подобрали пример неправильного использования кодировки символов в Java и увидели, как это сделать правильно. Наконец, мы обсудили некоторые другие распространенные сценарии ошибок, связанные с кодировкой символов.

Как всегда, код для примеров доступен на GitHub .